
Environmental Health Perspectives
Vol. 91, pp. 57-62, 1991

Sequential Measurements of Bone Lead
Content by L X-Ray Fluorescence in
CaNa2EDTA-Treated Lead-Toxic Children
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With the development ofL X-ray fluorescence (LXRF) to measure cortical bone lead directly, safely,
rapidly, and noninvasively, the present study was undertaken to a) evaluate LXRF as a possible re-
placement for the CaNa2EDTA test; b) quantify lead in tibial cortical bones of mildly to moderately
lead-toxic children before treatment; and c) quantify lead in tibial cortical bones of lead-toxic chil-
dren sequentially following one to two courses of chelation therapy. The clinical research design was
based upon a longitudinal assessment of 59 untreated lead-toxic children. At enrollment, if the blood
lead (PbB) was 25 to 55 jg/dL and the erythrocyte protoporphyrin (EP) concentration was 2 35 glg/dL,
LXRF measurement of tibial bone lead was carried out. One day later, each child underwent a
CaNa2EDTA provocative test. If this test was positive, lead-toxic children were admitted to the
hospital for 5 days of CaNa2EDTA therapy. These tests were repeated 6 weeks and 6 months after
enrollment. Abatement of lead paint hazards was achieved in most apartments by the time of initial
hospital discharge.
The LXRF instrument consists of a low energy X-ray generator with a silver anode, a lithium-doped

silicon detector, a polarizer of incident photons, and a multichannel X-ray analyzer. Partially polar-
ized photons are directed at the subcutaneous, medial mid-tibial cortical bone. The LXRF spectrum,
measured 900 from the incident beam, reveals a peak in the 10.5 KeV region, which represents the
lead La line. The effective dose equivalent using tissue weighting factors according to guidelines of
the National Council on Radiation Protection and Measurements (1989), was 2.5 FSv. The reproduci-
bility of replicate LXRF measurements, including the day-to-day variation of the instrument, in 26
lead-toxic children, after repositioning the instrument within 5 cm of the first LXRF measurements,
was ±9.2 (95% confidence limits). For an overlying tibial skin thickness of 5 mm, the minimum detec-
tion limit was 7 Ag of lead/g (wet weight) at the 95% confidence interval.
Based upon a discriminant analysis, 90% of lead-toxic children were predicted correctly as being

CaNa2EDTA-positive or CaNa2EDTA-negative. Using LXRF and PbB values to predict CaNa2EDTA
outcomes, the specificity and sensitivity of these two predictors were 86 and 93%, respectively. In
a significant fraction of CaNa2EDTA-positive and CaNa2EDTA-negative children, cortical bone lead
values were similar to lead concentrations measured via bone biopsy in normal adults and lead
workers in industry. By 24 weeks after enrollment, PbB, EP, and urinary lead/EDTA ratios were simi-
lar in all groups. The most dramatic decreases in net corrected photon counts by LXRF occurred in
children treated twice. Mean values of cortical bone lead by LXRF at 24 weeks in all three groups of
children were similar to the mean concentration in untreated CaNa2EDTA-negative children at en-
rollment but still three to five times greater than those measured in the tibia or whole teeth of
normal European children using atomic absorption. In lead-toxic children who did not qualify for
treatment, additional significant accumulation of lead in bone ended once children were removed
from leaded environments or returned to lead-abated apartments. These data suggest that LXRF
measurements of lead in tibial cortical bone have considerable promise to replace the CaNa2EDTA
test and to provide a more appropriate end point of chelation therapy than the conventional indices
of PbB and EP. Moreover, markedly elevated bone lead values accumulated during early childhood
may have an intergenerational impact, as maternal lead stores amassed during childhood cross the
placenta and directly affect the developing fetus.
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Introduction
Lead toxicity is the most common preventable dis-

ease in preschool children today in the United States.
In its 1988 report to Congress, the U.S. Public Health
Service estimated that 5 million or more young chil-
dren are at risk from all sources of lead, including
paint and lead in food, drinking water, dust, dirt, and
gasoline (1). This disease is likely to continue for many
years because there are still about 40 million dwellings
nationally with hazardous leaded paint (1).
Neurobehavioral (2,3), cognitive (2,3), developmental

(4,5), and biochemical abnormalities (6) have been
demonstrated in children with blood lead (PbB) levels
below 25 Ag/dL, the Centers for Disease Control's cur-
rent definition of an upper limit for "normal" PbB val-
ues (7). Present screening and diagnostic techniques
cannot identify large numbers of asymptomatic lead
toxic children, many of whom may require chelation
therapy. Erythrocyte protoporphyrin (EP) screening
identifies only about one-half of lead-toxic children
who, by definition, have elevated PbB values between
25 and 55 Itg/dL (8). Furthermore, the residence half-
time of lead in blood is short and reflects recent expo-
sure (9), whereas bone lead represents a time-averaged
compartment of lead with a residence time of months
to years (10).
The decision to proceed with in-hospital chelation

therapy is based upon a positive disodium calcium-
edetate (CaNa2EDTA) test (11), which is the current
reference method for assessing total body lead stores
(11). CaNa2EDTA chelates lead from extracellular
fluid, thereby removing lead from hard and soft tis-
sues, including blood (12). The CaNa2EDTA test re-

quires a quantitative 8- to 24-hr urine collection,
which is virtually impossible to achieve in large num-
bers of young children.
With the recent development of L X-ray fluorescence

(LXRF) to measure cortical bone lead directly, safely,
rapidly, and noninvasively (13,14), the present study
was undertaken to a) evaluate LXRF as a possible re-

placement for the CaNa2EDTA test (13); b) quantify
lead in tibial cortical bones of mildly to moderately
lead-toxic children before treatment (13); and c) quan-
tify lead in tibial cortical bones of lead-toxic children
sequentially following one to two courses of chelation
therapy.

Methods
The clinical research design was based upon a longi-

tudinal assessment of59 untreated lead-toxic children.
At enrollment, PbB values were determined. If the
PbB was 25 to 55 Ig/dL and the EP concentration in
whole blood was > 35 Itg/dL, LXRF measurement of
tibial bone lead was carried out (Fig. 1). One day later,
each child underwent a CaNa2EDTA provocative test.
Ifthis test was positive, lead-toxic children were admit-
ted to the hospital for 5 days of CaNa2EDTA therapy
at a daily dose of 1000 mg/M2 given by continuous in-

Untreated Lead-Toxic Children
(BPb: 25-55 /Ag/dL; EP > 35 gg/dL)

Longitudinal Design

At Enrollment

BPb, EP
I

LXRF
4

4eCaNa2EDTA Test IVet4

In-Hospital CaNa2EDTA Therapy Follow-Up

* Repeat testing at 6 weeks, 6 months, 1 year
* On-going abatement in all apartments
* Alternative housing, as indicated
* Repeat in-hospital CaNa2EDTA therapy
predicated upon a positive CaNa2EDTA test

FIGURE 1. Clinical research design.

travenous infusion. These tests were repeated 6 weeks
and 6 months after enrollment. During this 6-month
period, if a child qualified for a second provocative test
and a second course of CaNa2EDTA treatment in the
hospital, such regimens were carried out. Abatement
of lead paint hazards was achieved in most apartments
by the time of initial hospital discharge. In about 20%
of children, alternative housing was obtained with
family or friends until housing repairs were com-
pleted. By 6 to 8 weeks postenrollment, most of the
major housing repairs had been completed.
The LXRF instrument consists of a low-energy X-ray

generator (Philips Electronics Model #PW1729-25)
with a silver anode, a lithium-doped silicon detector, a
polarizer of incident photons, and a multichannel X-ray
spectrum analyzer (13,14). (U.S. Patent #07/158,495,
assignee: Elex Analytical Technologies Corporation,
Upton, NY 11973). Partially polarized photons are di-
rected at the subcutaneous, medial midtibial cortical
bone. The LXRF spectrum, measured 900 from the in-
cident beam, reveals a peak in the 10.5 KeV region,
which represents the lead La line. To correct for atten-
uation of photons by pretibial soft tissue, thickness
measurements were carried out ultrasonically.
The average skin dose, deliberately limited to 1 rad

over a-4 cm2 area, was delivered in 16.5 min (Table 1).
The effective dose equivalent was calculated to be
< 2.5 microsieverts, about 1/10th to 1/20th of one den-
tal X-ray and about 1/25th of that from one radio-
graphic examination of the chest (13,14). This effective
dose equivalent is < 0.1% of the average annual effec-
tive dose equivalent for an individual in the U.S. popu-
lation from natural background radiation sources.
Within the same population, therefore, LXRF mea-
surements of the tibia are much less risky than those
dental and pulmonary radiological examinations that
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X-ray generator
High voltage
Current
X-ray tube anode

Detection system
X-ray detector

Patients
Age
Exposed area

Imparted energy

Effective dose
equivalent

Counting time
Soft tissue (skin)
thickness over the
medial surface of
the tibia

Minimum detection limit

Day-to-day instrument
reproducibility

In vivo reproducibility of
replicate measurements
in 26 lead-toxic children

50 kVp
30 mA
Ag

(Closed system;
without significant
scattering)

Si (Li)

1-6 years

-4 cm2
0.1 mJ (- 1/10-1/20
of dental X-ray)
< 2.5 jSv (- 1/20-1/25
of chest X-ray)

16.5 min
3-8 mm (median, 5 mm)

7 ,g lead/g of bone with
5 mm of skin thickness

± 5.1% (95% confidence
interval

± 9.2% (95% confidence
interval

are performed routinely. Because this instrumenta-
tion was designed as an essentially closed system, a

parent can be present during the LXRF examination
with negligible risk from scattered radiation. The re-

producibility of replicate LXRF measurements in 26
lead-toxic children, after repositioning the instrument
within 5 cm of the first LXRF measurement, was

9.2% (95% confidence limit) (13).
To quantify X-ray attenuation by overlying soft tis-

sue, the net 16.5-min photon count in the lead La peak
*from the medial aspect of the tibia of nine adult surgi-
cally amputated specimens was recorded before and
after removal of epitibial soft tissue. An average effec-
tive exponential attenuation coefficient (0.45 ± 0.06
mm-,, mean ± SEM) was calculated from the resul-
tant nine photon count ratios (13). Similar results were
obtained from regression analyses of these ratios with
respect to soft tissue thickness (14).
The average concentration of lead in the full cross-

section oftibial bone subjacent to the area ofLXRF ex-
amination was measured by several flameless atomic
absorption measurements of dissolved bone from each
of nine amputated specimens. The correlation coeffi-
cient (r value) between LXRF measurements of bare
bones and the average value of atomic absorption
analyses oftwo full cross-sections ofeach specimen was
0.92 (14). The relative standard deviation for 18 mea-
surements of bone lead samples by flameless atomic
absorption spectroscopy (AAS) was ± 5.1% (95% confi-
dence limits). The r value between LXRF measure-
ments of intact limbs and AAS measurements of the
bone lead samples was 0.95 (14). The average value of
the ratio of the tibial bone lead concentration, in
micrograms per gram, to the net corrected LXRF
photon count, normalized to the median skin thickness

Table 2. Criteria for validation and clinical assessment
of LXRF measurements in lead-toxic children (13,14).

Parameter Carried out In progress

Clinical relevance X

Dosimetry X

Closed system X

Parent in attendance X

Reproducibility of instrument X

Reproducibility in lead-toxic
children X

AAS versus LXRF (surgically
removed limbs) X

Minimum detection limit X

Exponential attenuation coefficient X

Photon count ratios
Regression analysis

Pregnancy-dosimetry (15)
Further improvements in system
Counting time
Lead/strontium ratios
Minimum detection limit

X

X

of 5 mm, was 0.09 ± 0.01 (Itg/g/count, mean ± SEM).
For this skin thickness, the minimum detection limit
was estimated to be 7 yg lead/g (wet weight) at the 95%
confidence interval (13,14).
Based upon clinical research data already published

(13), sequential LXRF data presented herein and a de-
tailed study ofthe physics and calibration ofthe LXRF
instrument (14), the validation and diagnostic applica-
bility of this new technique have been established in
lead-toxic children (Table 2). Nonetheless, further in-
strument improvements to decrease the counting time
and enhance the minimum detection limit (MDL) be-
low 7 ,g lead/g ofbone can be anticipated by modifying
the geometry of the detector and using different polar-
izing materials (Table 2). Dosimetry measurements
have also been carried out to assess the safety ofLXRF
measurements during pregnancy. These data indicate
that one or two LXRF measurements during preg-
nancy is equivalent to the natural background radi-
ation dose that the fetus is exposed to during 15 min
of normal gestation (15).

Results
Based upon home visits and objective assessments of

the quality of housing of these Bronx children, their
ages, and their PbB, EP, and urinary lead-CaNa2EDTA
ratios (PbU/EDTA), these lead-toxic children were rep-
resentative of the majority of children attending lead-
toxicity programs nationally. The CaNa2EDTA-posi-
tive children had higher PbB, EP, and net corrected
LXRF photon counts compared to the CaNa2EDTA-
negative children (Table 3) (13). Values for bone lead,
corrected for 5 mm of overlying soft tissue in all study
children, were about two times greater in CaNa2EDTA-
positive than in CaNa2EDTA-negative children.
Correlation coefficients other than the correlation

between LXRF and EP were statistically significant
(Table 4) (13). Discriminant function analysis was car-

Table 1. LXRF technique: noninvasive detection of bone
lead in vivo using polarized radiation.
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lkble 3. PbB, EP, PbU/CaNa2EDTA values, and net corrected LXRF values in lead-toxic children (13).
Corrected LXRF valuesa,b

CaNa2EDTA Ratio of Net Bone Pbc
test result Age, months PbB, Ag/dL EP, Ag/dL PbU/CaNa2EDTA photon counts zg Pb/g
Negative 33 lod 30 5d 89 43d 0.39 0.13d 159 ± 20e 14 ± 2e
(n = 30)
Positive 38 ± 15* 39 ± 8* 115 ± 65t 0.95 ± 0.27' 309 + 52* 29 ± 4*
(n = 29)

a Corrected according to the day-to-day reproducibility of the instrument.
b Corrected to 5 mm of overlying skin thickness.
c Normal adult values for tibial lead are 19-27 Ag Pb/g (16,17). Values for tibial lead in adult workers in lead industries are 2 30 Ag Pb/g

(16,17).
d Mean ± SD.
e Mean + SEM.
* p < 0.001 versus CaNa EDTA-negative group.
tp < 0.01 versus CaNa2EDTA-negative group.

Table 4. Statistical analyses of net corrected LXRF photon counts, PbB, EP,
and CaNa2EDTA test results from 59 lead toxic children (13).

Pearson Analysis of tests
correlation
coefficients LXRF/PbB LXRF/EP LXRF/CaNa2EDTA PbB/CaNa2EDTA PbB/EP
r 0.388 0.200 0.472 0.701 0.499
p < 0.003 > 0.010 < 0.001 < 0.001 < 0.001

ried out by entering corrected LXRF counts, PbB, EP,
and age in a stepwise manner with the CaNa2EDTA
test result as the categorical criterion variable. Based
upon this analysis, 90% of lead toxic children were pre-
dicted correctly as being CaNa2EDTA-positive or
CaNa2EDTA-negative. Neither age nor EP contribu-
ted to the power ofthe discriminant analysis. In a retro-
spective analysis of59 similar lead-toxic children from
our clinic using the indices of EP and PbB to predict
CaNa2EDTA outcomes, 78% of children were correctly
categorized. Hence, by including bone lead measure-
ments by LXRF, which has a high discriminant power
alone, an additional 190,000 to 650,000 lead-toxic chil-
dren in the U.S. could be correctly categorized and ap-
propriately managed medically. By using net corrected
LXRF counts and PbB values to predict CaNa2EDTA
outcomes, the specificity and sensitivity of these two
predictors were 86 and 93%, respectively (Table 5) (13).
In 20 and 24% of CaNa2EDTA-negative and CaNa2-
EDTA-positive children, respectively, cortical bone

Table 5. CaNa2EDTA test outcomes compared to
predicted outcomes from a discriminant analysis
using corrected LXRF photon counts and PbB

values as independent variables (13).a
Predicted

Actual CaNa EDTA CaNa2EDTA outcomes
test results + -

+ 28 2
4 25

a By using net corrected LXRF photon counts and PbB to predict
CaNa2EDTA test outcomes, the specificity [true negative (-) (n =
25)/true negative (- ) plus false positive (+ ) (n = 29)] was 86% and the
sensitivity [true positive (+) (n = 28)/true positive (+) plus false
negative (-) (n = 30)] was 93%.

lead values were similar to lead concentrations mea-
sured in bone biopsies from normal adults (16,17). Re-
markably, an additional 40% of CaNa2EDTA-positive
children had bone lead concentrations observed in in-
dustrially exposed adults (16,17).
In this longitudinal study, lead-toxic children who

did not qualify for treatment and other children who
underwent one or two courses of CaNa2EDTA treat-
ment were re-evaluated 6 weeks and 24 weeks posten-
rollment. By 24 weeks, PbB, EP, and PbU/EDTA ratios
were very similar in all three groups (Figs. 2A-C). The
most dramatic decreases in net corrected photon
counts by LXRF occurred in children treated twice. In
addition, there was a gradual and progressive dissocia-
tion between PbB, EP, or PbU/EDTA ratios and se-
quential measurements of bone lead by LXRF (Fig.
2D).
Mean values of cortical bone lead by LXRF at 24

weeks in all three groups of children were similar to
the mean concentration in untreated CaNa2EDTA-
negative children at enrollment and still three to five
times greater than those measured in the tibia or
whole teeth of normal European children using AAS
(18-21). In lead-toxic children who did not qualify for
treatment, additional significant accumulation oflead
in bone ended once children were removed from leaded
environments and/or returned to lead-abated apart-
ments (Fig. 2D).

Discussion
The development and clinical validation of K-line

XRF instruments in industrially exposed adults
(22,23) and the L-line XRF technique in lead-toxic chil-
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BLOOD LEAD CONCENTRATIONS
BY TREATMENT GROUP
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FIGURE 2. Sequential values for (A) PbB, (B) EP, (C) PbU/EDTA
ratios, and (D) net corrected LXRF counts are shown in children
at enrollment and 6 weeks and 6 months after enrollment. Rx =
O indicates lead-toxic children who did not qualify for CaNa2-
EDTA treatment; Rx = 1 represents children treated with one in-
hospital course of CaNa2EDTA after obtaining baseline values
at enrollment; and Rx = 2 indicates lead-toxic children treated
in the hospital with CaNa2EDTA after baseline values were
obtained at enrollment and again 6 weeks postenrollment.

dren (13,14) open exciting and highly relevant time
windows of several months to several years to assess
the impact of large bone reservoirs of lead on human
health. These two XRF approaches to measure lead in
bone are likely to shed further understanding on the
biological information obtained by measuring lead in
whole blood (6). The LXRF technique also presents a
possibility for resolving long-standing uncertainties
concerning fetal exposure to lead in relation to mater-
nal lead stores. Moreover, XRF techniques may explore
epidemiological connections between hypertension
(24) and osteoporosis (25).

It is clear from previous work that concentrations of
lead in bone (long bones and tooth dentine) correlate
closely with the presence oflead nephropathy in adults
(26) and neurobehavioral and cognitive impairments
in children (19,21,27) (Table 6). Furthermore, during
nonsteady-state conditions (growth, pregnancy, lacta-
tion, demineralization ofthe skeleton), it is reasonable
to expect that the metabolism of lead in bone is related
more closely to skeletal remodeling and recycling rates
than to chemical differences between lead and calcium.
In this study of59 lead-toxic children, the clinical rel-

evance and diagnostic capability of the LXRF tech-
nique have been proven. A PbB determination and

l1ble 6. Cortical bone lead values in children.

Reference Subjects Mean, ppm wet weight
Barry (18) Normals 3
Winnecke (19) Normals 3-5
Grandjean (20) Normals 3-5
Needleman (28) Lead poisoned - 31
Winnecke (21) Smelter exposed -12
Rosen et al. (13) Lead toxic
(by LXRF) CaNa2EDTA (-) 14

CaNa2EDTA (+) 29

LXRF measurement were predictive of the need for in-
hospital chelation therapy in 90% of lead-toxic chil-
dren (PbB: 25-55 Itg/dL; EP > 35 Ag/dL). By including
bone lead measurements by LXRF, several additional
thousands of lead-toxic U.S. children annually could be
correctly categorized and appropriately managed med-
ically (1). Moreover, the capability of this new LXRF
technique may be applied even more widely as consid-
erations are given to lowering the current Centers for
Disease Control's definition of an elevated PbB value
as > 25 /tg/dL. In this regard, at mean PbB values of
33 and 38 1g/dL in CaNa2EDTA-negative and CaNa2-
EDTA-positive children, respectively, a majority of
children in both groups, by 6 years of age, have already
achieved bone lead values measured in normal adults
and workers in lead industries. We surmise that either
an excessively narrow margin of safety or insufficient
safety is provided by current U.S. guidelines, which de-
fine an elevated PbB as > 25 Atg/dL.
Other results indicated that neither age nor EP con-

tributed to the power of the discriminant analysis; a
significant though modest correlation was Qbserved
between bone lead values by LXRF and PbB concentra-
tions in untreated children. In children 6 months after
enrollment who were untreated, treated once or
treated twice (Figs. 2A-C), PbB, EP, and PbU/EDTA
ratios returned to values currently considered to be
normal. In contrast, tibial cortical bone lead concen-
trations remained three to five times higher than con-
centrations in compact tooth bone in normal European
children (18-21) (Fig. 2D). These high bone lead values,
at the end point of so-called successful chelation thera-
py, may prove to be of considerable public health sig-
nificance as some of these children become women of
childbearing age. Elevated bone lead values accumu-
lated during early childhood may have an intergenera-
tional impact, as these maternal lead stores cross the
placenta and impact directly on the developing fetus.
These data indicate that LXRF measurements of

lead in cortical bone may have the potential to replace
the cumbersome, impractical CaNa2EDTA test. Our
results also suggest that LXRF measurements of lead
in bone may ultimately prove to be a more appropriate
endpoint of chelation therapy than the conventional
indices: PbB, EP, and PbU/EDTA. We speculate that
LXRF measurements may prove to be useful predictors
of the results of neurobehavioral parameters in lead-
toxic children after chelation therapy.

This study was supported in part by NIH grant no. ES04039. D. N. S.
and J. A. K.-E. acknowledge support, in part, from the U.S. Depart-
ment of Energy under prime contract DE-AC02-76CH00016.
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